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Abstract
Background: Human ether‐à‐go‐go‐related gene (hERG) potassium‐channel block 
represents a harmful side effect of drug therapy that may cause torsade de pointes 
(TdP).	Analysis	of	ventricular	repolarization	through	electrocardiographic	T‐wave	fea‐
tures represents a noninvasive way to accurately evaluate the TdP risk in drug‐safety 
studies.	This	study	proposes	an	artificial	neural	network	(ANN)	for	noninvasive	elec‐
trocardiography‐based classification of the hERG potassium‐channel block.
Methods: The	 data	 were	 taken	 from	 the	 “ECG	 Effects	 of	 Ranolazine,	 Dofetilide,	
Verapamil, and Quinidine in Healthy Subjects” Physionet database; they consisted of 
median vector magnitude (VM) beats of 22 healthy subjects receiving a single 500 μg 
dose of dofetilide. Fourteen VM beats were considered for each subject, relative 
to time‐points ranging from 0.5 hr before to 14.0 hr after dofetilide administration. 
For each VM, changes in two indexes accounting for the early and the late phases 
of	 repolarization,	ΔERD30% and ΔTS/A, respectively, were computed as difference 
between values at each postdose time‐point and the predose time‐point. Thus, the 
dataset contained 286 ΔERD30%‐ΔTS/A pairs, partitioned into training, validation, and 
test	sets	(114,	29,	and	143	pairs,	respectively)	and	used	as	inputs	of	a	two‐layer	feed‐
forward	ANN	with	two	target	classes:	high	block	(HB)	and	low	block	(LB).	Optimal	
ANN	(OANN)	was	identified	using	the	training	and	validation	sets	and	tested	on	the	
test set.
Results: Test set area under the receiver operating characteristic was 0.91; sensitiv‐
ity,	specificity,	accuracy,	and	precision	were	0.93,	0.83,	0.92,	and	0.96,	respectively.
Conclusion: OANN	represents	a	reliable	tool	for	noninvasive	assessment	of	the	hERG	
potassium‐channel block.
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1  | INTRODUCTION

Block of the human ether‐à‐go‐go‐related gene (hERG) potassium 
channel represents a harmful side effect of drug therapy (Roden, 
2016). The hERG potassium channel carries the rapid compo‐
nent of the delayed rectifier potassium current IKr (outward cur‐
rent),	 thus	playing	a	key	role	 in	cardiac	ventricular	repolarization	
(Mitcheson, Chen, Lin, Culberson, & Sanguinetti, 2000). Block of 
the hERG potassium channel leads to lower potassium current 
going outside the cardiac cell, longer cardiac myocyte action 
potential	 duration,	 longer	 ventricular	 repolarization,	 and	 conse‐
quently longer QT interval on the electrocardiogram (ECG). This 
phenomenon, known as drug‐induced long QT syndrome (diLQTS), 
could predispose to development of torsade de pointes (TdP), a 
polymorphic ventricular tachycardia. For this reason, investigation 
of the QT‐interval prolongation was used as main hurdle factor 
for evaluation of the existing drugs and development of new ones 
(Mitcheson et al., 2000).

Drugs, such as antiarrhythmics, used to treat cardiovascular dis‐
eases, but also some antibiotics, anticancer agents, antipsychotics, 
and antihistamines, are known to prolong the QT interval (Roden, 
2016). However, among drugs that block the hERG potassium chan‐
nels and prolong the QT interval, some have minimal TdP risk. This 
is attributed to the fact that such drugs cause a multichannel block 
condition, since they block calcium and late sodium channels, beside 
potassium	channel	(Johannesen,	Vicente,	Gray,	et	al.,	2014).	Block	of	
potassium outward current causes an increase in calcium or sodium 
current,	 leading	 to	 early	 afterdepolarizations,	 which	 constitutes	 a	
trigger for TdP. Thus, concomitant blockage of calcium and late so‐
dium	current	can	avoid	early	afterdepolarizations,	 thus	 resulting	 in	
a lower TdP risk. Therefore, an investigation based solely on the QT 
interval is not exhaustive to establish TdP risk attributed to a drug. 
A	deeper	analysis	of	ventricular	repolarization	through	T‐wave	fea‐
tures can more accurately evaluate TdP risk in drug‐safety studies 
(Johannesen,	Vicente,	Mason,	et	al.,	2014).	Recently,	an	index	com‐
bining T‐wave down slope and T‐wave amplitude has been proposed 
as an alternate ECG‐based metric for quantifying the hERG potas‐
sium‐channel block, independently from concomitant calcium and/or 
sodium channels block (De Bie, Chiu, Mortara, Corsi, & Severi, 2017). 
However, evidence showed that the main ECG difference between 
a pure hERG blocker and a multichannel blocker drug is that the for‐
mer	prolongs	both	 the	 early	 and	 the	 late	phases	of	 repolarization,	
whereas	the	latter	preferentially	shortens	early	phase	of	repolariza‐
tion	 (Johannesen,	Vicente,	Mason,	et	 al.,	2014).	Thus,	 features	de‐
scribing	both	the	early	and	the	late	phases	of	repolarization	should	
be combined to provide a comprehensive description of drug effect 
in terms of TdP risk.

The aim of this study was to propose an artificial neural network 
(ANN)	for	classification	of	the	hERG	potassium‐channel	block,	having	
as inputs ECG‐based T‐wave features on both right and left T‐wave 
sides (with reference to the T‐wave peak) to account for the early 
and	the	late	phases	of	repolarization.	To	this	aim,	ECG	acquisitions	at	
various time‐points before and after administration of dofetilide, a 

pure	hERG	blocker	with	the	highest	risk	of	TdP,	quantified	in	1÷5%	of	
exposed	subjects	(Abraham	et	al.,	2015)	were	considered.

2  | METHODS

2.1 | Study population and clinical data

The	 data	 analyzed	 in	 this	 study	 are	 available	 at	 the	 “ECG	
Effects	 of	 Ranolazine,	 Dofetilide,	 Verapamil,	 and	 Quinidine	 in	
Healthy Subjects” Physionet database (Goldberger et al., 2000; 
Johannesen,	 Vicente,	 Mason,	 et	 al.,	 2014).	 The	 study	 popula‐
tion consisted of 22 healthy subjects; the inclusion criteria 
(Johannesen,	Vicente,	Mason,	et	al.,	2014)	required	subjects	to	be	
of general good health as determined by a physician, without a 
history of heart disease or unexplained syncope or a family his‐
tory	of	long	QT	syndrome;	to	be	18–35	years	of	age,	weigh	at	least	
50 kg,	and	have	a	body	mass	index	of	18–27 kg/m2; and to be able 
to read and understand the informed consent. In addition, sub‐
jects were excluded if they had more than 10 ectopic beats during 
a	 continuous	 3‐hr	 ECG	 recording	 at	 screening.	 Each	 subject	 re‐
ceived a single 500 μg dose of dofetilide under fasting conditions 
while undergoing continuous 12‐lead ECG acquisition (sampling 
frequency:	500	Hz;	amplitude	resolution:	2.5	μV). Triplicate 10‐s 
ECG segments were extracted from the continuous recording, at 
fourteen	predefined	time‐points:	one	predose	time‐point	(−0.5	hr)	
and	thirteen	postdose	time‐points	(1.0;	1.5;	2.0;	2.5;	3.0;	3.5;	4.0;	
5.0;	6.0;	7.0;	8.0;	12.0;	14.0	hr).	Additionally,	at	the	same	14	time‐
points, a blood sample was drawn for measuring dofetilide plasma 
concentration. Triplicate ECG segments and plasma data are avail‐
able	in	the	Physionet	database.	All	data	from	Physionet	have	been	
fully de‐identified and may be used without further independent 
ethics committee approval.

2.2 | Feature extraction from the ECG signal

Each	 10‐s	 12‐lead	 ECG	 segment	 was	 transformed	 into	 a	 10‐s	 3‐
Frank‐orthogonal lead ECG segment from which the median beat of 
the vector magnitude (VM) lead was derived (these data are avail‐
able in the Physionet database). Each median VM beat was consid‐
ered representative of the 10‐s ECG segment itself and was used 
for feature extraction. Hence, a total of 924 median VM beats were 
analyzed	(22	subjects	by	14	time‐points	by	three	ECG	recordings).

From each median VM beat, two T‐wave features were selected 
to	account	for	both	the	early	and	the	late	phases	of	repolarization,	
namely ERD30% (ms) and TS/A (per s). Specifically, ERD30% represents 
the	30%	early	phase	of	repolarization	duration	(Vicente	et	al.,	2015)	
and TS/A is defined as the ratio of down‐going T‐wave slope (TRS, 
mV/s) and T‐wave amplitude (TA, mV), where TRS is defined as the 
absolute value (being a downslope) of the mean first derivative of 
the T wave in the TpTe interval (i.e., time interval between T‐wave 
peak and T‐wave end). ERD30%, TA, and TpTe for each median VM beat 
were directly taken from the Physionet database, whereas TRS and 
TS/A were computed according to their definitions.
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In each subject, ERD30% and TS/A values associated with each of 
the 14 time‐points were computed as the mean value of the three 
measures obtained from triplicate ECG acquisitions. Successively, 
ΔERD30% and ΔTS/A were computed as the difference between the 
corresponding feature values at each of the thirteen postdose time‐
point	 (1.0–14.0	 hr)	 and	 the	 predose	 control	 time‐point	 (−0.5	 hr).	
Thus, a total of 286 ΔERD30% and ΔTS/A values were considered.

2.3 | Assessment of the hERG potassium‐channel 
block from plasma measurements

From dofetilide plasma concentration (D) measured at each of the 
thirteen postdose time‐points, the percentage of hERG potassium‐
channel block was estimated from the Hill equation (1):

where IC50	 is	 the	 drug	 concentration	 causing	50%	block,	 and	n is 
the Hill coefficient. IC50 and n values were assumed equal to 1 nM 
and 0.6, respectively, as reported in literature (Crumb, Vicente, 
Johannesen,	 &	 Strauss,	 2016).	 B(%)	 values	 were	 used	 to	 classify	
channel blocks into two classes: high block (HB), when B(%)	>	60%,	
and low block (LB), when B(%)	≤	60%.	Eventually,	plasma‐based	hERG	
potassium‐channel block classification in HB and LB was used as ref‐
erence	to	train,	validate,	and	test	the	proposed	ANN	(see	below).

2.4 | Artificial neural network for assessing the 
hERG potassium‐channel block

VM features ΔTS/A and ΔERD30% were used as inputs of a two‐layer 
feedforward	ANN	(one	hidden	layer	and	one	output	layer)	with	two	
output	neurons,	one	for	each	output	target	class	(HB	and	LB).	As	for	
the activation function, a sigmoid and a softmax function were used 
in the hidden and in the output layers, respectively (Bishop, 2006). 
Iterative backpropagation training was ensured by the Levenberg–
Marquardt algorithm (Hagan & Menhaj, 1994).

The dataset constituted by the 286 ΔERD30% and ΔTS/A input 
pairs and the corresponding 286 plasma‐based HB\LB output tar‐
gets was partitioned into training set, validation set, and test set ac‐
cording	to	the	following	percentages:	40%	(114	input	pairs	and	HB\
LB	output	targets),	10%	(29	input	pairs	and	output	targets),	and	50%	
(143	 input	 pairs	 and	 output	 targets),	 respectively.	Overall,	 20	 dif‐
ferent	ANN	structures	were	considered	by	progressively	increasing	
the number of hidden neurons from 1 to 20. For each structure, 500 
ANN	realizations,	different	for	neural	initialization,	were	considered;	
initialization	was	performed	by	 randomly	 assigning	 values	 to	both	
neuron	weights	and	bias.	For	each	ANN	realization,	training	and	vali‐
dation values of the area under the receiver operating characteristic 
(ROC)	curve	 (AUCTR	and	AUCVA, respectively) were used for com‐
puting	a	weighted	AUC	defined	as:

where	 weights	 compensate	 for	 different	 sizes	 of	 training	 and	
validation	sets	(King	&	Zeng,	2003).	The	optimal	ANN	structure	was	
selected	as	the	one	characterized	by	the	highest	mean	(over	the	500	
realizations)	AUCW	value.	Eventually,	the	optimal	ANN	(OANN)	for	
assessing the hERG potassium‐channel block was identified as the 
realization	with	optimal	structure	and	highest	AUCW.

2.5 | Statistics

Normality	of	ERD30%, TS/A, ΔERD30%, ΔTS/A,	B(%)	and	D	distributions	
were	 evaluated	 using	 Lilliefors’	 test.	 Normal	 feature	 distributions	
were described in terms of mean ± standard deviation (SD) and com‐
pared	with	 the	 paired‐sample	 t	 test	 for	 equal	means.	Non‐normal	
feature distributions were described in terms of 50th [25th;75th] 
percentiles and compared using the Wilcoxon signed rank test for 
equal medians (i.e., 50th percentile). Statistical significance level was 
set at 0.05 in all cases.

To	evaluate	 goodness	of	OANN‐based	 classification,	 plasma‐
based HB\LB classification was taken as the gold standard. The 
cases	classified	as	HB	by	both	plasma	measurements	and	OANN	
were considered as true positive (TP); the cases classified as LB by 
both	 plasma	measurements	 and	OANN	were	 considered	 as	 true	
negative	(TN);	the	cases	classified	as	HB	by	plasma	measurements	
and	LB	by	OANN	were	considered	as	false	negative	(FN);	eventu‐
ally, the cases classified as LB by plasma measurements and HB 
by	OANN	were	considered	as	 false	positive	 (FP).	Accordingly,	 to	
evaluate	OANN	performances,	sensitivity	(Se),	specificity	(Sp),	ac‐
curacy	(Ac),	and	precision	(Pp)	were	computed	in	correspondence	
with	the	optimal	operating	point	(i.e.,	the	point	that	minimizes	er‐
roneous classifications) of the ROC curve relative to the test set 
as follows:

Thus, Se measures the percentage of HB correctly classified 
by	OANN	with	respect	to	all	HB	identified	by	plasma	measures;	Sp	
measures	 the	percentage	of	LB	correctly	classified	by	OANN	with	
respect	 to	 all	 LB	 identified	 by	 plasma	measures;	Ac	measures	 the	
total	percentage	of	HB	and	LB	correctly	classified	by	OANN;	and	Pp	
measures	the	percentage	of	HB	correctly	classified	by	OANN	with	
respect	to	all	OANN	HB	classifications.

(1)B (%)=100 ⋅
Dn

IC
n

50
+Dn

(2)AUCW=0.2 ⋅AUCTR+0.8 ⋅AUCVA

(3)Se=
TP

TP+FN

(4)Sp=
TN

TN+FP

(5)Ac=
TP+TN

TP+TN+FP+FN

(6)Pp=
TP

TP+FP
.
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3  | RESULTS

Feature	 trends	 over	 time	 (from	−0.5	 to	 14	 hr	 time‐points)	 are	 re‐
ported in Table 1 and shown in Figure 1, where individual distribu‐
tions are also depicted. ERD30%	was	the	only	feature	characterized	
by a non‐normal distribution. Both ERD30% and TS/A were altered by 
the dofetilide administration and reached their maximum difference 
(with respect to their predose levels) at 2.5 hr time‐point (i.e., at the 
time‐point in which both D and B(%)	were	maximum)	 to	 then	turn	
toward their basal levels. Differently from TS/A, at 14 hr time‐point, 
ERD30% was still not completely returned to its predose level, and D 
and B(%)	were	still	greater	than	zero.

According	to	B(%),	training	set	contained	95	HB	cases	and	19	LB	
cases, while validation set contained 24 HB cases and 5 LB cases. 
Training	and	validation	sets	were	used	to	identify	OANN,	which	was	
characterized	by	18	neurons	 in	 the	hidden	 layer	 (Figure	2).	When	
applied to the test set, which according to B(%)	was	composed	of	119	
HB	cases	and	24	LB	cases,	OANN	provided	a	ROC	with	an	AUC	of	
0.91	(Figure	3).	The	contingency	table	is	reported	in	Table	2.	Values	
of	Se,	Sp,	Ac,	and	Pp	were	0.93,	0.83,	0.92,	and	0.96,	respectively.

4  | DISCUSSION

This	study	proposed	an	ANN‐based	model	for	classification	of	the	
hERG potassium‐channel block based on ECG features character‐
izing	 the	 T	 wave.	 Specifically,	 two	 features,	 namely	 ERD30% and 
TS/A,	 were	 used	 as	 ANN	 input.	 ANN‐based	 classification	 of	 the	
hERG block was made in terms of high‐ (HB) and low‐ (LB) block 
percentage,	 using	 60%	block	 as	 threshold.	 Eventually,	OANN	was	
identified by using ECG data recorded at different time‐points from 
dofetilide	administration	(from	−0.5	to	14	hr)	and	by	comparing	the	

ANN‐based	hERG	block	classification	against	classification	from	the	
plasma measurements, the latter used as the gold standard.

Pharmacokinetics as well as features trends over time have 
been shown not to differ considerably among subjects (Figure 1), 
thus	confirming	that	ECG‐based	features	are	adequate	ANN	 input	
features	to	discriminate	high	from	low	block.	As	for	the	 input	fea‐
ture selection, ERD30% and TS/A were chosen among all the features 
that are known to correlate with the hERG channel block, namely 
TS/A, TpTe, ERD30%, and LRD30%	 (i.e.,	30%	 late	 repolarization	delay)	
(De	Bie	et	al.,	2017;	Vicente	et	al.,	2015).	Additionally,	ECG	features	
showing correlation with blood potassium concentration were also 
investigated, since hERG block and hypokalemia result in similar 
outcomes in terms of QT‐interval prolongation and reduced T‐wave 
amplitude (De Bie et al., 2017; Diercks, Shumaik, Harrigan, Brady, & 
Chan, 2004). The list of features correlating with blood potassium 
concentration included TRS, TA, TCOG (i.e., T‐wave center of gravity) 
and T/RA (i.e., the ratio between the amplitude of T and R waves), 
as well as TS/A (Corsi et al., 2017; Dillon et al., 2015). Thus, TS/A was 
chosen since it is a strong predictor of both hERG channel block and 
blood potassium level (De Bie et al., 2017). Being TS/A a reliable de‐
scriptor	of	the	late	phase	of	repolarization,	ERD30% was chosen as an 
independent (from multicollinearity testing) ECG feature related to 
the	early	phase	of	repolarization.	Indeed,	both	the	early	and	the	late	
phases	of	 repolarization	 are	 known	 to	be	 affected	by	hERG	block	
(Johannesen,	 Vicente,	 Mason,	 et	 al.,	 2014).	With	 respect	 to	 TS/A, 
which returns to pre‐administration values within 12 hr, alterations 
in ERD30% last longer and follow the persistent hERG block (as de‐
tected by plasma measurements) for at least 14 hr (Table 1). This 
observation suggests that dofetilide, as pure hERG blocking drug, 
affects	more	early	than	 late	phase	of	repolarization,	thus	corrobo‐
rating significance of ERD30%, in addition to TS/A in the classification 
of hERG block.

Time‐points (hr) D (nmol/L) B(%) ERD30% (ms) TS/A (per s)

−0.5 0.00 ± 0.00 0.00 ± 0.00 43.0	[41.3;46.7] 11.29	±	0.93

1.0 3.30	±	1.65***  63.84	±	11.41***  47.7	[44.7;54.7]***  10.16	±	1.32*** 

1.5 4.17	±	1.15***  69.49	±	4.37***  55.8	[49.7;62.0]***  9.04	±	1.22*** 

2.0 5.47	±	0.79***  73.33	±	1.80***  61.2	[57.0;72.7]***  7.93	±	1.59*** 

2.5 5.96	±	0.78***  74.34	±	1.58***  63.0	[57.3;69.3]***  6.67	±	2.01*** 

3.0 5.58	±	0.68***  73.62	±	1.48***  62.0	[55.3;75.3]***  7.14	±	1.91*** 

3.5 4.81	±	0.69***  71.80	±	1.87***  61.2	[56.0;74.0]***  8.05	±	1.51*** 

4.0 4.75	±	0.71***  71.64	±	1.89***  60.3	
[53.3;63.3]*** 

7.94	±	1.65*** 

5.0 3.86	±	0.45***  69.13	±	1.49***  54.2	[51.0;62.3]***  8.40	±	1.75*** 

6.0 3.68	±	0.54***  68.45	±	2.01***  56.7	[52.3;66.7]***  8.84	±	1.99*** 

7.0 3.13	±	0.44***  66.31	±	1.90***  53.7	[51.3;63.7]***  9.41	±	1.53*** 

8.0 2.73	±	0.34***  64.50	±	1.70***  53.3	[47.0;58.3]***  9.61	±	1.64*** 

12.0 1.62	±	0.22***  57.00	±	2.07***  45.3	[43.3;50.7]**  10.85	±	1.20* 

14.0 1.40	±	0.35***  54.56	±	3.35***  44.5	[42.0;49.3]*  11.06 ± 1.49

*p	<	.05;	**p	<	.01;	***p < .001 when comparing postdose vs predose levels.

TA B L E  1   Electrocardiographic and 
plasma‐feature trends over time (from 
−0.5	to	14	hr	time‐points)
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The	OANN	classification	of	 the	hERG	block	was	performed	by	
using individual differences in T‐wave morphology from their base‐
line values and not their absolute values. Indeed, we know from lit‐
erature (Vicente et al., 2015) that changes in T‐wave morphology 
could provide specific information to discriminate between high and 
low risk of torsade de pointes. Thus, we had to refer to changes with 
respect to baseline values (ΔERD30% and ΔTS/A values) and not to 
their actual values (ERD30% and TS/A).

ECG‐based hERG block classification is noninvasive and thus 
preferable over plasma‐based hERG block classification. However, 
being based on ECG features, it can be performed only in the time 
interval during which the presence of the drug causes ECG changes 
(particularly T‐wave changes, being ERD30% and TS/A used as input 
features	 of	OANN).	 Such	 interval	 does	 not	 necessarily	match	 the	
time interval needed by the drug to be completely washed out. In 
the	present	study,	dofetilide	was	used,	and	OANN	performance	was	
evaluated in the time interval going from 1 to 14 hr after dofetilide 
administration (Table 1). Indeed, no important pharmacokinetic issue 
occurred in this time interval, being dofetilide distribution into the 
effect compartment already completed after 1 hr and total elimi‐
nation of the drug not yet reached at 14 hr after oral administration 
(Lenz	&	Hilleman,	2000)	(Table	1).

OANN	was	efficient	in	detecting	high	hERG	block	(Se	=	0.93	in	the	
test	 set).	 A	 little	 less	 efficient	 performance	was	 provided	 by	OANN	
when	detecting	low	hERG	block	(Sp	=	0.83	in	the	test	set).	However,	
this result could be due to the low number of LB cases in the dataset 
(overall, 48 LB cases out of 286, with only 24 cases in the test set, as by 
plasma‐based	classification,	Table	2).	Overall,	OANN	showed	good	HB\
LB	classification	performances	(Ac	=	0.92	and	Pp	=	0.96	in	the	test	set).

The	 results	 of	 this	 study	 demonstrate	 that	OANN	 reliably	 as‐
sesses hERG block in the presence of pure hERG blocking drugs, such 
as dofetilide. Indeed, pure hERG blocking drugs affect both the early 
and	the	late	phases	of	repolarization	(Johannesen,	Vicente,	Mason,	
et al., 2014). Other drugs causing multichannel block were shown to 
shorten	only	the	early	phase	of	repolarization	(Johannesen,	Vicente,	
Mason,	 et	 al.,	 2014).	 The	 ability	 of	OANN	 in	 discriminating	 hERG	
block in multichannel block condition will be investigated in future 
studies. However, being ERD30% a descriptor of the early phase of 
repolarization	 and	being	TS/A already tested in multichannel block 
conditions,	it	is	reasonable	to	hypothesize	that	the	proposed	OANN‐
based model could be a reliable tool also in this condition.

Level of hERG potassium‐channel block may increment the risk 
of torsade de pointes (Roden, 2016). Thus, availability of methods 
for automatic assessment of the hERG potassium‐channel block 
based on changes (with respect to baseline) in T‐wave features may 

F I G U R E  1   Individual (gray lines) and mean/median (black 
lines) distributions of the features over time; D (nmol/L), dofetilide 
plasma	concentration	(panel	a);	B(%),	percentage	of	hERG	
potassium‐channel block (panel b); ERD30%	(ms),	30%	early	phase	
of	repolarization	duration	(panel	c);	and	TS/A (per s), ratio of down‐
going T‐wave slope and T‐wave amplitude (panel d)
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support assessment of cardiovascular risk during some medical 
treatments (pharmacological or not), such as hemodialysis, in which 
abnormal fluctuations of the potassium concentration occur.

This	study	uses	ANN	for	classification	of	the	hERG	potassium‐
channel block after dofetilide administration in healthy subjects. 
Future studies will investigate validity of this method when applied 
to patients, possibly with abnormal T waves. Still, we can speculate 
the method to work also in patients if T‐wave variations are analo‐
gous to those in healthy subjects, independently from their initial 
T‐wave morphology.

In	conclusion,	this	study	proposes	OANN	as	a	reliable	model	for	
noninvasive assessment of the hERG potassium‐channel block. This 
new	model	 focuses	 on	 characterization	 of	 the	 hERG	 block	 based	
on T‐wave changes and was able to reliably classify hERG block in 
two	classes:	HB	and	LB.	OANN	neuron	weights	and	biases	were	not	
reported here; however, they are available for research studies by 
directly contacting the corresponding author (Prof. Laura Burattini, 
l.burattini@univpm.it).
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F I G U R E  2  The	optimal	artificial	neural	network	(OANN)	for	the	classification	of	hERG	block.	OANN	is	fed	by	two	differential	
electrocardiographic features (ΔTS/A and ΔERD30%)	and	is	characterized	by	two	layers:	the	hidden	layer,	characterized	by	18	neurons,	and	the	
output	layer,	characterized	by	2	neurons	for	hERG	block	classification	in	two	classes,	high	block	(HB;	higher	than	60%)	and	low	block	(LB;	not	
overcoming	60%)

F I G U R E  3   Receiver operating characteristic (ROC) obtained 
by	applying	the	optimal	artificial	neural	network	(OANN)	to	the	
test set (N	=	143).	Area	under	the	curve	(AUC)	is	0.91;	Se	and	Sp	
in	correspondence	with	the	optimal	point	(*)	are	0.93	and	0.83,	
respectively

TA B L E  2   Contingency table for evaluating classification in 
high‐block (HB) and low‐block (LB) classes based on the optimal 
artificial	neural	network	(OANN)	against	that	based	on	plasma	
measurements, taken as gold standard

 

Plasma‐based 
classification

HB LB TOT

OANN‐based	classification HB 110 4 114

LB 9 20 29

TOT 119 24 143

mailto:l.burattini@univpm.it
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